
I²MTC 2008 – IEEE International Instrumentation and  
Measurement Technology Conference 
Victoria, Vancouver Island, Canada, May 12–15, 2008 

Sensor Signal Processing for Autonomous Wireless Sensors 

S. Bicelli1, A.Depari1, A.Flammini1, D.Marioli1, M. Serpelloni1, E. Sisinni1, A.Taroni2 
1Dept. of Electronics for Automation, University of Brescia, Brescia, Italy 

2Carlo Cattaneo University, Castellanza, Varese, Italy 
Tel: +39 030 3715899, Fax: +39 030 380014, email: alessandro.depari@ing.unibs.it 

 

Abstract – Wireless Sensor Networks are nowadays a reality. 
However, a wireless node must be a truly autonomous system, i.e. it 
must embed its own power source, generally a battery pack. For this 
reason, it is of main concern to limit every source of  wasted power. 
In particular, nodes exploit low duty-cycle strategies to increase 
their life, spending most of their time in low power mode, turning off 
all devices within the system except a wakeup oscillator. However, 
in this way some time must be spent waiting for circuitries settling 
time, especially if a high accuracy measurement is required. In this 
paper an efficient implementation of a filtering algorithm that is  
able to reduce this time is discussed. It is based on a hybrid 
combination of median and mean filter, joining advantages of both 
linear and non-linear filtering. A well tailored implementation has 
been experimentally tested and discussed.  
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I. INTRODUCTION 

Wireless sensors use is growing in many application 
fields, as home automation, environmental monitoring and 
process control [1]. Wireless transceiver cost is quickly 
decreasing and emerging technologies (e.g. IEEE802.15.4) 
allow a power reduction in order to obtain autonomous and 
mobile sensors [2]. Nowadays batteries are the most common 
way to realize autonomous sensors and several research 
activities concern with an efficient use of batteries [3]. On the 
other hand, many methods of power harvesting (solar cell, 
electromagnetic fields, piezoelectric generators, 
thermopiles...) are growing [4]; they can be used to recharge 
batteries or to replace batteries. In both cases low-power 
techniques must be adopted to save the small amount of 
available power. In most of applications, the wireless sensor 
periodically wakes up, measures the interesting quantity and, 
if necessary, transmits information. In the case of humidity or 
temperature sensor, information transmission rarely occurs, 
because humidity or temperature variation is very slow. In 
most cases, the measure is repeated every second while data 
transmission takes place less than one time every minute. For 
this reason, in order to save further power, the sensing 
element and the interface circuits are powered just before the 
measure and then they are turned off as soon as the measure 
is over. Both sensing element and electronic interface circuits 
require a certain time to furnish a stable and accurate 
measurement. 

In the following, a temperature/humidity sensor is taken 
into account, but the proposed approach can be used with 
other type of sensors. Typical temperature or humidity 

sensors used in low-cost applications are resistive or 
capacitive sensors. In the first case, the sensor can be inserted 
in a voltage divider and the output voltage is acquired by 
means of an analog-to-digital converter. In the second case, 
the sensor is used in an oscillating circuit, e.g. based on the 
555 multivibrator device, and a microcontroller estimate the 
output signal period by exploiting its timing unit. In both 
cases, the circuits must be operative for a short time, so that 
the power consumption could be limited. On the other hand, 
the use of filters is highly advisable, in order to improve the 
signal-to-noise ratio. However, low-pass filters applied to 
signals and power supply cause a long measure settling time. 
As a consequence, an enlargement of the operative time of 
the sensor, microcontroller and interface circuits is produced 
which determines an increment of the power consumption. 

A simple and largely employed solution is waiting for a 
fixed time to perform the measure after the power supply has 
been applied to the sensors and the circuits. This fixed time 
value is established in the project stage by means of a-priori 
considerations about the system. However, this solution is 
neither flexible nor efficient, because the time value is 
usually oversized. This is due to the circuit output settling 
time which is not usually specified in the component data 
sheets and, furthermore, it strictly depends on the 
temperature, power supply and load conditions. In addition, 
even for the same component, it can vary among different 
manufacturers, especially if the component is not specifically 
developed for low power applications. 

 For these reasons, usually the output signal from the 
sensor is continuously measured until it reaches a stable 
value. This operation is not always simple, because of the 
noise overlapped to the signal, which makes the time to get a 
stable value longer. From a different point of view, this is a 
typical pattern recognition problem, made up of a pre-
processing, feature extraction and detection phase. Feature 
extraction can be performed by means of edge detection 
(analyzing the gradient of the monitored signal), while for the 
detection a simple threshold rule can be used. However, these 
steps works well only in absence of noise, that must be 
eliminated by the pre-processing stage. In conclusion, the use 
of a suitable filter is highly recommended; it should be 
effective towards different noise typologies, but it does not 
have to increase too much the measure time. In addition, it 
should be fast and easy to implement in order to not increase 
microcontroller cost. In case of signal affected by Gaussian 
noise overlapped with impulsive noise, as it happens for 
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instance on audio or echocardiographic signal analysis, 
literature shows a large use of filters based on a combination 
of median, weighted median and linear filters for the sensor 
output smoothing [5]. For example, median hybrid filters 
suggested by Heinonen, and Neuvo[6,7], running medians 
with robust regression, analized by Davies et al [8], 
Q�-method-based filters proposed by Croux and Rousseeuw 
[9,10]. For audio signal elaboration and image processing, 
many realizations of efficient median filters have been 
proposed [11-14], even if usually in this field fast and 
powerful processors or DSPs are employed. Particularly 
interesting are the so called trimmed or winsorized mean 
filter, better described in the next section [15]. Generally, 
such filters are well designed for the signal of interest, but 
they are not easy to implement and need a lot of 
computational resources, requiring the microcontroller to be 
operative for a long time. 

The goal of this work is the development of a simple filter 
easy to implement and suitable to the measurement 
stabilization detection. 

II. THE PROPOSED APPROACH 

As we said, the combination of a median and a mean filter 
is suitable for the application, but the implementation must be 
carefully tailored to be effective without requiring a lot of 
computational effort. The following analysis of application 
and noise is needed to better characterize filter requirements. 
The signal coming out from the sensor can be approximated 
as the summation of three terms: the first one represents the 
useful information, the second one models the broadband 
Additive White Gaussian Noise (AWGN) and the last one 
models impulsive noise. As well known, broadband noise can 
be effectively removed, or at least attenuated, by means of 
low-pass FIR filter (Finite Impulse Response filter, as the 
moving average), while impulsive noise can be removed 
using non linear filtering as median filters. Obviously, the 
span of the filter must be chosen in order to prevent 
underlying signal distortion and it is regulated by a trade off. 
A filter with too many taps requires a high computational 
effort and has a high latency (no suitable for fast sensors as 
resistive ones). On the contrary, AWGN and glitch immunity 
cannot be ensured with too few taps. Considering that 
sampling time of resistive sensors could be in the range 
[10,100] �s and in the range [0.1,1.0] ms for capacitive 
sensors, the overall elaboration time must be on the order of 
100 �s per sample. As an example, in Figure 1 it is shown the 
output of a capacitive sensor used together with a TLC555 
oscillator; the measurement readout is the signal period (time 
elapsed between two successive rising edges, on the order of 
100�s). The jitter, due to switching broadband noise, makes 
measurement T1, T4 and T5 different; on the contrary, the 
glitch makes T2 and T3 outlier data that must be discarded. 

As regards AWGN suppression, supposing to implement a 
linear phase FIR filter (i.e. the group delay is constant at all 
frequencies), an N-taps filter has a latency equal to: 
Ts(N-1)/2 [s], where Ts is the sampling period. Probably, the 

best choice is a moving average filter that provides the fastest 
step response for a given noise reduction. 

 
 

 

T1 T2 T3 T5 T4 
 

Figure 1. Output of a capacitive sensor used with TLC555 affected by 
an outlier. 

Referring to impulsive noise, how many spikes can be 
effectively rejected? To answer this question it is usually 
adopted the estimator breakdown point; it is defined as the 
largest fraction of input data that can be replaced by 
arbitrarily large values without driving the estimator output 
error to infinity. The breakdown point of  a median of 
N=2K+1 data points is K/N, i.e. at least halve of the sample 
needs to be replaced to completely destroy the filter output. 
On the contrary, the mean filter has a breakdown point equal 
to zero,  regardless the filter length.  

Aim of this work is to explore efficient implementations of 
a median filter able to reject at least two outliers, in 
conjunction with a moving average filter with an overall 
delay on the order of twice the sampling time. In other words, 
the median filter must have a minimum length of five and the 
moving average filter must be a four taps filter providing a 
new output value every four input samples still halving the 
noise. However, even if the moving average is an 
exceptionally good smoothing filter (the action in the time 
domain), it is an exceptionally bad low-pass filter (the action 
in the frequency domain). In addition, the non overlapping 
windowing of median filter leads to a decimation in time, 
worsening spectral properties (Figure 2a); in fact the cutoff 
frequency is equal to (Ts·N·M)-1, where Ts is the sampling 
period, N is the median filter length and M the moving 
average length, respectively. In order to overcome this limit, 
it is possible to use overlapping windows shifted of one point 
if an odd length is chosen or two points if an even length is 
adopted. For instance, an overlapped 5-taps median filter 
followed by a 4-taps moving average filter (Figure 2b) has an 
absolute better noise bandwidth with respect to the non 
overlapped one (Figure 2a). A 6-taps median filter, that 
updates its output, i.e. the average of the two central points, 
every two input samples and it is followed by a 2-taps 
moving average filter (Figure 2c) has about the same time 
properties than the previous one (Figure 2b). In fact both 
solutions are able to filter out two outlier data (glitches with 
duration equal to two samples) and show the same behavior, 
with respect to a step and a monotonic input, than a 4-taps 
moving average. Obviously, non overlapping strategy does 
not satisfy our requirements; as regards overlapping 
implementations, it can be shown that an even-length median 
followed by a 2-taps average filter (Figure 2c) has better 
frequency rejection properties than an odd-length median 
(Figure 2b), due to different interleaving of linear and non-
linear filtering actions. 
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Figure 2. Comparison of a) traditional non-overlapping approach 

and b,c) modified overlapped hybrid median-mean filter. 
 
A further improvement can obtained using the so called 

truncated, trimmed or winsorized mean [15]. In an ordered 
set Xi the placement of the sample is referred as the rank. 
Thus, in a set of cardinality N=2K+1 the median has rank = K 
and the Truncated Mean Filter –TMF– is given by the 
average of all the samples having rank [K+1-Q, K+1+Q], 
where Q is a constant value fixed a-priori. More formally: 
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If we considered an even length N=2K, the previous 

equation must be slightly modified since the median is 
defined as the average between samples of rank K and K+1 
and (1) becomes: 
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Following this reasoning, an 8-taps modified median filter, 

that is updated every four input samples and furnishes the 
average value of the four central points, exhibits an even 
steeper frequency response still preserving a good behavior 
with respect to step impulse, monotonic signals and glitches. 

 

III. FILTER IMPLEMENTATION 

In the following a new implementation of an 8-taps 
modified median filter will be described; an experimental 
evaluation will be carried out with real wireless sensors. As a 
reference, the above described 6-taps filter will be also tested 
(see Figure 2c). In Figure 3 the flow chart of the reference 6-
taps filter is shown. We start from a 6-elements input vector; 
each element is a couple {value, time} representing the 
sample value and sampling instant, with 1�time�6. 
Neglecting the initialization phase, a list structure has been 
implemented and element {value, time} are updated in the 
vector (READ xi and REPLACE xi-6) according to the bubble 
sort algorithm. As the vector is already ordered, the bubble 
sort for the new entry is a very efficient method (SORT vect). 
Every two updates, the median filter furnishes the average of 
the two central points. The overall system output is the 
average of two consecutive outputs of the median filter.  

In Figure 4 the flow chart of the proposed 8-taps filter is 
shown. It must be noticed that this implementation is 
different from the previous one that exploits the bubble sort 
algorithm; the proposed algorithm is focused on the discard 
of extremes, that are labeled m1 (minimum value), m2(second 
minimum), M2 (second maximum), M2 (maximum value) 
(with m1 � m2 � M2 � M1). 
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i:=i+1
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Figure 3. Flow-chart of the reference 6-taps filter. 

The basic idea is to partition the data array; starting from 
an initial sorted array, every new element is forced in the 
outliers group or in the correct samples one. This is the fastest 
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way to proceed if no a-priori knowledge of the signal is 
available [16]. In fact, in this application we want to select 
outliers element, not to sort them, i.e. we can attend only the 
subset that contains them. After that, we can perform 
averaging of  correct samples. 

First three samples are sorted by a simple algorithm which 
initializes m1, m2, M1 and M2 values. The remaining 5 
samples are checked to replace m1, m2, M1 and M2. At the 
end of this process, the output result coincides with the mean 
value of the four central values (summation of all elements 
without m1, m2, M1 and M2). 

Thanks to this approach it is possible to decrease the 
computational effort leading to almost equal time for both 
best and worst case. The flow chart in Figure 4 is a simplified 
one. In fact, samples are processed while they are acquired in 
a continuous and more efficient fashion. 
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Figure 4. Flow-chart of the proposed 8-taps filter. 

IV. RESULTS 

Two wireless prototypes have been developed to test the 
filters performance: a temperature sensor (PT100) with an 
interface circuit that provides an output voltage; a capacitive 
humidity sensor with a frequency-coded output signal. Both 
prototypes are supposed to be battery powered, to measure 
every 100 ms and to transmit information every minute. In 
order to optimize the battery power (two AA NiMH 
rechargeable batteries -2400mAh-), a step-up DCDC (Texas 
TPS61070) interface is necessary between the power source 
and the circuits. 

Battery life L [hours] of a wireless sensor depends on the 
battery capacity C [Ah], the power supply efficiency �, the 
power supply output voltage gain Kv and the total mean 
current consumption Icc,mean [A] according to L = 
(��C)/(Kv�Icc,mean). Normally the device wakes-up every 
Tm seconds, takes about Ta (active phase) to start-up and 
measure quantities, transmits and receives information by the 
Radio Frequency (RF) link every T seconds (T>Tm) taking 
time TRF. Icc,mean is shown in equation (3) where Ia, IRF and 
Isleep are the whole circuit current consumptions in the active, 
RF and sleeping phases respectively. 
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As in this case TRF<<T, the current consumption Icc,mean 

depends mainly on Ta. So, as we said, Ta must sufficiently 
high to guarantee a stable measurement, but not too high to 
save power. 

Both the realized prototypes use low power 
microcontroller (Freescale MC9S08GT60A) and low power 
IEEE802.15.4 transceiver (Freescale MC13192). The 
conditioning circuits must be simple in order to abate power 
consumption and it should be possible to virtually turn off 
this circuitry without affecting transient response. 

The first device is a wireless resistance temperature 
detector that uses a PT100 as the sensible element. Figure 5 
shows the conditioning circuitry, while eq. (4) shows its 
input/output relation.  

 
 6mARmA

R6
R71
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The sensor is driven by constant current to reduce the 

energy lost in the resistance of the wires. The current 
generator circuit, composed by both op amps U1 and U2, 
excites the sensor. An operational amplifier, A4, is used to 
zero wire resistance error. A fourth amplifier (U3) is used to 
amplify the signal and filter possible alias interferences and 
wideband noise. The 10-bit converter of the MC9S08GT60A 
converts the voltage across the RTD to digital code. Every 
amplifier is provided of shutdown pin to enter in the low 
power mode (Texas TLV2455). The output of the 
conditioning circuit is depicted in Fig. 9b; sampling time is 
Ts=14μs and cutoff frequency of the second order 
Butterworth low pass filter is about 5kHz. 

The second wireless device uses a capacitive sensor 
(Humirel HS1100) to measure relative humidity. Signal 
conditioning circuit (Figure 6) converts capacitance 
variations into a frequency coded signal IC according to Eq. 
(5).  
 

ln2R6)2(R5C@%RH
1f

����
�  (5) 
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The variable capacitor U1 is connected to the TRIG and 
THRES pin of a timer 555. Pin 7 is used as a short circuit pin 
for resistor R5. The sensor capacitance is charged through R6 
and R5 to the threshold voltage (approximately 0.67Vcc) and 
discharged through R6 only to the trigger level 
(approximately 0.33Vcc) since R6 is shorten to ground by pin 
7. To provide an output duty cycle close to 50%, R5 should 
be very low compared to R6. the frequency output can be 
computed as depicted in Figure 1b. At RH=55%, the sensor 
has a nominal capacity C=180pF, so the conditioning 
circuitry gives a frequency of 7483Hz (microcontroller input 
capture has a timing unit with 125ns of resolution). The timer 
TLC555 lacks of a shutdown pin, so it is powered by a 
microcontroller output port (P2). 
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Figure 5. Interface circuit of the PT100.  
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Figure 6. Interface circuit of the capacitive sensor. 

 
In Figure 7 it is shown an example of the output of both 

circuits (PT100 signal corresponds to Vout in Figure 5, HR 
signal corresponds to IC in Figure 6); the image has been 

grabbed with an Agilent MSO6054A digital scope. It is 
clearly visible that both signals have a start up transient that 
must be identified and filtered out in order to obtain a correct 
measurement. 
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Figure 7. Interface circuit of the capacitive sensor. 

 
To estimate filters performance, the two algorithms 

previously described (6 tap filter and the proposed 8 tap one) 
have been implemented in C language and tested with the 
best and the worst signal trends. No compiler optimizations 
have been set in order to be more hardware implementation 
independent.  However, it must be taken into account that the 
adopted microcontroller has an 8-bit wide bus and stored data 
are 16-bit wide. For both filters, the best signal shape is a 
steady trend, because it requires the lowest operations 
number to evaluate and insert the new sample; conversely, 
the worst signal is a monotonic signal (e.g. decreasing ramp). 
As previously stated, both filters update their outputs every 
four input signal samples; in order to make a comparison, 
Table 1 shows the number of cycles required to process a 
new output sample for both solutions. It should be noticed 
how the 8 tap filter is almost independent from signal shape 
and offers a better mean case. 
 

8 TAP FILTER 6 TAP FILTER 
Best case, signal = constant values

N. cycles Time [�s] 
(1cycle=125ns) N. cycles Time [�s] 

(1cycle=125ns) 

2046 256 1985 248 
Worst case, signal = decreasing ramp 

N. cycles Time [�s] 
(1cycle=125ns) N. cycles Time[�s] 

(1cycle=125ns) 

2180 272 5895 737 
Table 1. Filters performance 

 
Figure 8 portraits the capacitive sensor output with the 8 

tap filter. On the y axes it is shown the number of ticks (one 
every 125ns) and on the x axes is reported the acquisition 
number. The filter gives a valid measure (within 0.1% of full 
scale) after the 44th sample (�5.9ms after the startup). The 
presence of noise and glitches does not affect this result. It is 
evident that a simple algorithm that estimates the derivative 
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of the signal can be effectively used after the filter in order to 
detect the transient resolution and preserve batteries. 

 In this case the 8 tap filter takes 23981 cycles (3.0ms) of 
computing time while, on the same signal, the 6 tap filter 
takes 52749 cycles (6.6ms). This means that with the 
proposed approach the estimation of transient conclusion can 
be performed in real time, while signal is sampled. On the 
contrary, with the traditional approach, even considering that 
the first sample is available after 1.5ms (see Figure 7) and 
supposing to parallelize the acquisition and the processing 
phases, we have to wait an additional interval of about 1.5ms. 
Considering that the microcontroller and the electronic 
conditioning circuit has an average consumption in the active 
state of 7 mA, this means that we should waste about 10�C 
per measurement.  
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Figure 8. Filters output with noisy frequency signal. 

Figure 9 shows the acquisition data from the resistive 
sensor. The filter produce the first valid measure after the 
24th sample, that is after 336μs. Obviously, now the 
computation cannot be performed in real-time. A greater 
error threshold (0.5%FS) has been set to take in account the 
10-bit of resolution of the ADC converter. Also in this case 
the 6 tap filter is less performing than the 8 tap filter; the first 
takes 26942 (3.4ms) cycles before giving the first correct 
value, while the latter one takes 13058 cycles (1.6ms) with a 
saving charge of about 13�C. As before, no optimization has 
been used. 
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Figure 9. Filters output with noisy voltage signal. 

V. CONCLUSIONS 

In this paper an efficient implementation of a hybrid 
median-mean filter has been described and tested. It has been 
purposely designed to faster wakeup time of an autonomous 
wireless node. In this kind of applications, nodes spent most 
of their time in low power mode turning off all devices within 
the node except a low power oscillator. Obviously, this leads 
to a transient that must be discarded in order to obtain a good 
quality readout. The developed filter is able to preserve step 
response still rejecting broadband noise. Some experimental 
results have been described, showing filter performance and 
that the proposed implementation greatly decreases 
computational time with respect to a traditional approach. 
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