
I²MTC 2008 – IEEE International Instrumentation and
Measurement Technology Conference
Victoria, Vancouver Island, Canada, May 12–15, 2008

Sensor Signal Processing for Autonomous Wireless Sensors

S. Bicelli1, A.Depari1, A.Flammini1, D.Marioli1, M. Serpelloni1, E. Sisinni1, A.Taroni2
1Dept. of Electronics for Automation, University of Brescia, Brescia, Italy

2Carlo Cattaneo University, Castellanza, Varese, Italy
Tel: +39 030 3715899, Fax: +39 030 380014, email: alessandro.depari@ing.unibs.it

Abstract – Wireless Sensor Networks are nowadays a reality.
However, a wireless node must be a truly autonomous system, i.e. it
must embed its own power source, generally a battery pack. For this
reason, it is of main concern to limit every source of wasted power.
In particular, nodes exploit low duty-cycle strategies to increase
their life, spending most of their time in low power mode, turning off
all devices within the system except a wakeup oscillator. However,
in this way some time must be spent waiting for circuitries settling
time, especially if a high accuracy measurement is required. In this
paper an efficient implementation of a filtering algorithm that is
able to reduce this time is discussed. It is based on a hybrid
combination of median and mean filter, joining advantages of both
linear and non-linear filtering. A well tailored implementation has
been experimentally tested and discussed.

Keywords – wireless sensor, low-power, sensor signal processing.

I. INTRODUCTION

Wireless sensors use is growing in many application
fields, as home automation, environmental monitoring and
process control [1]. Wireless transceiver cost is quickly
decreasing and emerging technologies (e.g. IEEE802.15.4)
allow a power reduction in order to obtain autonomous and
mobile sensors [2]. Nowadays batteries are the most common
way to realize autonomous sensors and several research
activities concern with an efficient use of batteries [3]. On the
other hand, many methods of power harvesting (solar cell,
electromagnetic fields, piezoelectric generators,
thermopiles...) are growing [4]; they can be used to recharge
batteries or to replace batteries. In both cases low-power
techniques must be adopted to save the small amount of
available power. In most of applications, the wireless sensor
periodically wakes up, measures the interesting quantity and,
if necessary, transmits information. In the case of humidity or
temperature sensor, information transmission rarely occurs,
because humidity or temperature variation is very slow. In
most cases, the measure is repeated every second while data
transmission takes place less than one time every minute. For
this reason, in order to save further power, the sensing
element and the interface circuits are powered just before the
measure and then they are turned off as soon as the measure
is over. Both sensing element and electronic interface circuits
require a certain time to furnish a stable and accurate
measurement.

In the following, a temperature/humidity sensor is taken
into account, but the proposed approach can be used with
other type of sensors. Typical temperature or humidity

sensors used in low-cost applications are resistive or
capacitive sensors. In the first case, the sensor can be inserted
in a voltage divider and the output voltage is acquired by
means of an analog-to-digital converter. In the second case,
the sensor is used in an oscillating circuit, e.g. based on the
555 multivibrator device, and a microcontroller estimate the
output signal period by exploiting its timing unit. In both
cases, the circuits must be operative for a short time, so that
the power consumption could be limited. On the other hand,
the use of filters is highly advisable, in order to improve the
signal-to-noise ratio. However, low-pass filters applied to
signals and power supply cause a long measure settling time.
As a consequence, an enlargement of the operative time of
the sensor, microcontroller and interface circuits is produced
which determines an increment of the power consumption.

A simple and largely employed solution is waiting for a
fixed time to perform the measure after the power supply has
been applied to the sensors and the circuits. This fixed time
value is established in the project stage by means of a-priori
considerations about the system. However, this solution is
neither flexible nor efficient, because the time value is
usually oversized. This is due to the circuit output settling
time which is not usually specified in the component data
sheets and, furthermore, it strictly depends on the
temperature, power supply and load conditions. In addition,
even for the same component, it can vary among different
manufacturers, especially if the component is not specifically
developed for low power applications.

 For these reasons, usually the output signal from the
sensor is continuously measured until it reaches a stable
value. This operation is not always simple, because of the
noise overlapped to the signal, which makes the time to get a
stable value longer. From a different point of view, this is a
typical pattern recognition problem, made up of a pre-
processing, feature extraction and detection phase. Feature
extraction can be performed by means of edge detection
(analyzing the gradient of the monitored signal), while for the
detection a simple threshold rule can be used. However, these
steps works well only in absence of noise, that must be
eliminated by the pre-processing stage. In conclusion, the use
of a suitable filter is highly recommended; it should be
effective towards different noise typologies, but it does not
have to increase too much the measure time. In addition, it
should be fast and easy to implement in order to not increase
microcontroller cost. In case of signal affected by Gaussian
noise overlapped with impulsive noise, as it happens for

1-4244-1541-1/08/$25.00 ©2008 IEEE 1210

instance on audio or echocardiographic signal analysis,
literature shows a large use of filters based on a combination
of median, weighted median and linear filters for the sensor
output smoothing [5]. For example, median hybrid filters
suggested by Heinonen, and Neuvo[6,7], running medians
with robust regression, analized by Davies et al [8],
Q�-method-based filters proposed by Croux and Rousseeuw
[9,10]. For audio signal elaboration and image processing,
many realizations of efficient median filters have been
proposed [11-14], even if usually in this field fast and
powerful processors or DSPs are employed. Particularly
interesting are the so called trimmed or winsorized mean
filter, better described in the next section [15]. Generally,
such filters are well designed for the signal of interest, but
they are not easy to implement and need a lot of
computational resources, requiring the microcontroller to be
operative for a long time.

The goal of this work is the development of a simple filter
easy to implement and suitable to the measurement
stabilization detection.

II. THE PROPOSED APPROACH

As we said, the combination of a median and a mean filter
is suitable for the application, but the implementation must be
carefully tailored to be effective without requiring a lot of
computational effort. The following analysis of application
and noise is needed to better characterize filter requirements.
The signal coming out from the sensor can be approximated
as the summation of three terms: the first one represents the
useful information, the second one models the broadband
Additive White Gaussian Noise (AWGN) and the last one
models impulsive noise. As well known, broadband noise can
be effectively removed, or at least attenuated, by means of
low-pass FIR filter (Finite Impulse Response filter, as the
moving average), while impulsive noise can be removed
using non linear filtering as median filters. Obviously, the
span of the filter must be chosen in order to prevent
underlying signal distortion and it is regulated by a trade off.
A filter with too many taps requires a high computational
effort and has a high latency (no suitable for fast sensors as
resistive ones). On the contrary, AWGN and glitch immunity
cannot be ensured with too few taps. Considering that
sampling time of resistive sensors could be in the range
[10,100] �s and in the range [0.1,1.0] ms for capacitive
sensors, the overall elaboration time must be on the order of
100 �s per sample. As an example, in Figure 1 it is shown the
output of a capacitive sensor used together with a TLC555
oscillator; the measurement readout is the signal period (time
elapsed between two successive rising edges, on the order of
100�s). The jitter, due to switching broadband noise, makes
measurement T1, T4 and T5 different; on the contrary, the
glitch makes T2 and T3 outlier data that must be discarded.

As regards AWGN suppression, supposing to implement a
linear phase FIR filter (i.e. the group delay is constant at all
frequencies), an N-taps filter has a latency equal to:
Ts(N-1)/2 [s], where Ts is the sampling period. Probably, the

best choice is a moving average filter that provides the fastest
step response for a given noise reduction.

T1 T2 T3 T5 T4

Figure 1. Output of a capacitive sensor used with TLC555 affected by
an outlier.

Referring to impulsive noise, how many spikes can be
effectively rejected? To answer this question it is usually
adopted the estimator breakdown point; it is defined as the
largest fraction of input data that can be replaced by
arbitrarily large values without driving the estimator output
error to infinity. The breakdown point of a median of
N=2K+1 data points is K/N, i.e. at least halve of the sample
needs to be replaced to completely destroy the filter output.
On the contrary, the mean filter has a breakdown point equal
to zero, regardless the filter length.

Aim of this work is to explore efficient implementations of
a median filter able to reject at least two outliers, in
conjunction with a moving average filter with an overall
delay on the order of twice the sampling time. In other words,
the median filter must have a minimum length of five and the
moving average filter must be a four taps filter providing a
new output value every four input samples still halving the
noise. However, even if the moving average is an
exceptionally good smoothing filter (the action in the time
domain), it is an exceptionally bad low-pass filter (the action
in the frequency domain). In addition, the non overlapping
windowing of median filter leads to a decimation in time,
worsening spectral properties (Figure 2a); in fact the cutoff
frequency is equal to (Ts·N·M)-1, where Ts is the sampling
period, N is the median filter length and M the moving
average length, respectively. In order to overcome this limit,
it is possible to use overlapping windows shifted of one point
if an odd length is chosen or two points if an even length is
adopted. For instance, an overlapped 5-taps median filter
followed by a 4-taps moving average filter (Figure 2b) has an
absolute better noise bandwidth with respect to the non
overlapped one (Figure 2a). A 6-taps median filter, that
updates its output, i.e. the average of the two central points,
every two input samples and it is followed by a 2-taps
moving average filter (Figure 2c) has about the same time
properties than the previous one (Figure 2b). In fact both
solutions are able to filter out two outlier data (glitches with
duration equal to two samples) and show the same behavior,
with respect to a step and a monotonic input, than a 4-taps
moving average. Obviously, non overlapping strategy does
not satisfy our requirements; as regards overlapping
implementations, it can be shown that an even-length median
followed by a 2-taps average filter (Figure 2c) has better
frequency rejection properties than an odd-length median
(Figure 2b), due to different interleaving of linear and non-
linear filtering actions.

1211

�

Time

Time

Input signal
Median output
Mean output

Ts

5Ts

Ts

a)

b)

Time

Ts c)

Figure 2. Comparison of a) traditional non-overlapping approach

and b,c) modified overlapped hybrid median-mean filter.

A further improvement can obtained using the so called

truncated, trimmed or winsorized mean [15]. In an ordered
set Xi the placement of the sample is referred as the rank.
Thus, in a set of cardinality N=2K+1 the median has rank = K
and the Truncated Mean Filter –TMF– is given by the
average of all the samples having rank [K+1-Q, K+1+Q],
where Q is a constant value fixed a-priori. More formally:

�
�
� ������

�

�

	

	

�

�

otherwise0,
Q1K)(XrankQ1Kif1,

a

a

Xa
Q);X,...,(XTMF

i
i

N

1i
i

N

1i
ii

N1ODD (1)

If we considered an even length N=2K, the previous

equation must be slightly modified since the median is
defined as the average between samples of rank K and K+1
and (1) becomes:

�
�
� �����

�

�

	

	

�

�

otherwise0,
Q1K)(XrankQKif1,

a

a

Xa
Q);X,...,(XTMF

i
i

N

1i
i

N

1i
ii

N1EVEN (2)

Following this reasoning, an 8-taps modified median filter,

that is updated every four input samples and furnishes the
average value of the four central points, exhibits an even
steeper frequency response still preserving a good behavior
with respect to step impulse, monotonic signals and glitches.

III. FILTER IMPLEMENTATION

In the following a new implementation of an 8-taps
modified median filter will be described; an experimental
evaluation will be carried out with real wireless sensors. As a
reference, the above described 6-taps filter will be also tested
(see Figure 2c). In Figure 3 the flow chart of the reference 6-
taps filter is shown. We start from a 6-elements input vector;
each element is a couple {value, time} representing the
sample value and sampling instant, with 1�time�6.
Neglecting the initialization phase, a list structure has been
implemented and element {value, time} are updated in the
vector (READ xi and REPLACE xi-6) according to the bubble
sort algorithm. As the vector is already ordered, the bubble
sort for the new entry is a very efficient method (SORT vect).
Every two updates, the median filter furnishes the average of
the two central points. The overall system output is the
average of two consecutive outputs of the median filter.

In Figure 4 the flow chart of the proposed 8-taps filter is
shown. It must be noticed that this implementation is
different from the previous one that exploits the bubble sort
algorithm; the proposed algorithm is focused on the discard
of extremes, that are labeled m1 (minimum value), m2(second
minimum), M2 (second maximum), M2 (maximum value)
(with m1 � m2 � M2 � M1).

 START

cycle=0

cycle:=NOT cycle

i:=i+1

i:=i+1

out:=(s+yP1+yP2)/4 s:=yP1+yP2

Y N

L=6 P1=3 P2=4
y1, y2, … y6 : elements of
vect after sorting

SORT vect

INIT

READ xi
REPLACE xi-L

READ xi
REPLACE xi-L

SORT vect

Figure 3. Flow-chart of the reference 6-taps filter.

The basic idea is to partition the data array; starting from
an initial sorted array, every new element is forced in the
outliers group or in the correct samples one. This is the fastest

1212

way to proceed if no a-priori knowledge of the signal is
available [16]. In fact, in this application we want to select
outliers element, not to sort them, i.e. we can attend only the
subset that contains them. After that, we can perform
averaging of correct samples.

First three samples are sorted by a simple algorithm which
initializes m1, m2, M1 and M2 values. The remaining 5
samples are checked to replace m1, m2, M1 and M2. At the
end of this process, the output result coincides with the mean
value of the four central values (summation of all elements
without m1, m2, M1 and M2).

Thanks to this approach it is possible to decrease the
computational effort leading to almost equal time for both
best and worst case. The flow chart in Figure 4 is a simplified
one. In fact, samples are processed while they are acquired in
a continuous and more efficient fashion.

M1: maximum
M2: second maximum
m2: second minimum
m1: minimum

START

j=9

j:=4

Y

N

CHK MinMax

INIT

x:=buffer(j)

out:=(s-M1-M2-
-m1-m2)/4

j:=j+1

READ 4
new samples

READ buffer(1)
SET M1

READ buffer(2)
SET M2, m2

READ buffer(3)
SET m1

s:= SUM (buffer)

CHK MinMax

x>M2
Y N

N Y
x<m2 x>M1

M2:=x

M1:=x

M2:=M1x<m1

m2:=x

m1:=x

m2:=m1

YN

N Y

RETURN

Figure 4. Flow-chart of the proposed 8-taps filter.

IV. RESULTS

Two wireless prototypes have been developed to test the
filters performance: a temperature sensor (PT100) with an
interface circuit that provides an output voltage; a capacitive
humidity sensor with a frequency-coded output signal. Both
prototypes are supposed to be battery powered, to measure
every 100 ms and to transmit information every minute. In
order to optimize the battery power (two AA NiMH
rechargeable batteries -2400mAh-), a step-up DCDC (Texas
TPS61070) interface is necessary between the power source
and the circuits.

Battery life L [hours] of a wireless sensor depends on the
battery capacity C [Ah], the power supply efficiency �, the
power supply output voltage gain Kv and the total mean
current consumption Icc,mean [A] according to L =
(��C)/(Kv�Icc,mean). Normally the device wakes-up every
Tm seconds, takes about Ta (active phase) to start-up and
measure quantities, transmits and receives information by the
Radio Frequency (RF) link every T seconds (T>Tm) taking
time TRF. Icc,mean is shown in equation (3) where Ia, IRF and
Isleep are the whole circuit current consumptions in the active,
RF and sleeping phases respectively.

�
�����

���
m

aRFmm
sleep

RF
RF

m

a
ameancc, TT

TTTTTTI
T

TI
T
TII

m

a
sleepasleep T

T)I(II ��
 (3)

As in this case TRF<<T, the current consumption Icc,mean

depends mainly on Ta. So, as we said, Ta must sufficiently
high to guarantee a stable measurement, but not too high to
save power.

Both the realized prototypes use low power
microcontroller (Freescale MC9S08GT60A) and low power
IEEE802.15.4 transceiver (Freescale MC13192). The
conditioning circuits must be simple in order to abate power
consumption and it should be possible to virtually turn off
this circuitry without affecting transient response.

The first device is a wireless resistance temperature
detector that uses a PT100 as the sensible element. Figure 5
shows the conditioning circuitry, while eq. (4) shows its
input/output relation.

 6mARmA

R6
R71

R3
VRefRVout PT100PT100 ���

�

�
�
� ��� (4)

The sensor is driven by constant current to reduce the

energy lost in the resistance of the wires. The current
generator circuit, composed by both op amps U1 and U2,
excites the sensor. An operational amplifier, A4, is used to
zero wire resistance error. A fourth amplifier (U3) is used to
amplify the signal and filter possible alias interferences and
wideband noise. The 10-bit converter of the MC9S08GT60A
converts the voltage across the RTD to digital code. Every
amplifier is provided of shutdown pin to enter in the low
power mode (Texas TLV2455). The output of the
conditioning circuit is depicted in Fig. 9b; sampling time is
Ts=14μs and cutoff frequency of the second order
Butterworth low pass filter is about 5kHz.

The second wireless device uses a capacitive sensor
(Humirel HS1100) to measure relative humidity. Signal
conditioning circuit (Figure 6) converts capacitance
variations into a frequency coded signal IC according to Eq.
(5).

ln2R6)2(R5C@%RH
1f

����
� (5)

1213

The variable capacitor U1 is connected to the TRIG and
THRES pin of a timer 555. Pin 7 is used as a short circuit pin
for resistor R5. The sensor capacitance is charged through R6
and R5 to the threshold voltage (approximately 0.67Vcc) and
discharged through R6 only to the trigger level
(approximately 0.33Vcc) since R6 is shorten to ground by pin
7. To provide an output duty cycle close to 50%, R5 should
be very low compared to R6. the frequency output can be
computed as depicted in Figure 1b. At RH=55%, the sensor
has a nominal capacity C=180pF, so the conditioning
circuitry gives a frequency of 7483Hz (microcontroller input
capture has a timing unit with 125ns of resolution). The timer
TLC555 lacks of a shutdown pin, so it is powered by a
microcontroller output port (P2).

�

VRef

0

0

0

VDD

VDD

VDD

VDD

VDD

0

0

0

0

VRef

Vout

+

-

V+
V-

U2
TLV245X

R12

20k

R14

10k

+

-

V+
V-

U1
TLV245X

R1

470k

R2

470k

R4

470k

R3
1k

R5

470k

R8 470k

R11

130k

R7 49.9kR6 10k

R9

470k
R10

27k+

-

V+
V-

U4
TLV245X

C2 470p

C1
680p

+

-

V+
V-

U3
TLV245X

Current Source

Lead
compensation

Gain and anti alias

R
T
D

Figure 5. Interface circuit of the PT100.

P2

IC

U1

1

2

1

2

R5 51k - 1%

C7
2.2n

U2

TLC555

8

7

2
6

1

4

3
5

Vc
cDC

TR
TH

G
N

D

R

Q
CV

R8 1k - 5%

C6
100n

R6 510k - 0.5%

C15

1nF

Figure 6. Interface circuit of the capacitive sensor.

In Figure 7 it is shown an example of the output of both

circuits (PT100 signal corresponds to Vout in Figure 5, HR
signal corresponds to IC in Figure 6); the image has been

grabbed with an Agilent MSO6054A digital scope. It is
clearly visible that both signals have a start up transient that
must be identified and filtered out in order to obtain a correct
measurement.

�

Power�up�signal�

PT100�signal�

HR�signal�

Figure 7. Interface circuit of the capacitive sensor.

To estimate filters performance, the two algorithms

previously described (6 tap filter and the proposed 8 tap one)
have been implemented in C language and tested with the
best and the worst signal trends. No compiler optimizations
have been set in order to be more hardware implementation
independent. However, it must be taken into account that the
adopted microcontroller has an 8-bit wide bus and stored data
are 16-bit wide. For both filters, the best signal shape is a
steady trend, because it requires the lowest operations
number to evaluate and insert the new sample; conversely,
the worst signal is a monotonic signal (e.g. decreasing ramp).
As previously stated, both filters update their outputs every
four input signal samples; in order to make a comparison,
Table 1 shows the number of cycles required to process a
new output sample for both solutions. It should be noticed
how the 8 tap filter is almost independent from signal shape
and offers a better mean case.

8 TAP FILTER 6 TAP FILTER
Best case, signal = constant values

N. cycles Time [�s]
(1cycle=125ns) N. cycles Time [�s]

(1cycle=125ns)

2046 256 1985 248
Worst case, signal = decreasing ramp

N. cycles Time [�s]
(1cycle=125ns) N. cycles Time[�s]

(1cycle=125ns)

2180 272 5895 737
Table 1. Filters performance

Figure 8 portraits the capacitive sensor output with the 8

tap filter. On the y axes it is shown the number of ticks (one
every 125ns) and on the x axes is reported the acquisition
number. The filter gives a valid measure (within 0.1% of full
scale) after the 44th sample (�5.9ms after the startup). The
presence of noise and glitches does not affect this result. It is
evident that a simple algorithm that estimates the derivative

1214

of the signal can be effectively used after the filter in order to
detect the transient resolution and preserve batteries.

 In this case the 8 tap filter takes 23981 cycles (3.0ms) of
computing time while, on the same signal, the 6 tap filter
takes 52749 cycles (6.6ms). This means that with the
proposed approach the estimation of transient conclusion can
be performed in real time, while signal is sampled. On the
contrary, with the traditional approach, even considering that
the first sample is available after 1.5ms (see Figure 7) and
supposing to parallelize the acquisition and the processing
phases, we have to wait an additional interval of about 1.5ms.
Considering that the microcontroller and the electronic
conditioning circuit has an average consumption in the active
state of 7 mA, this means that we should waste about 10�C
per measurement.

20 40 60 800

500

1000

1500

2000

2500

3000

Sample

S
am

pl
e

va
lu

e

Filter output

Output filter with
measure < 0.1% FS

Input capture value Noise

Noise

Figure 8. Filters output with noisy frequency signal.

Figure 9 shows the acquisition data from the resistive
sensor. The filter produce the first valid measure after the
24th sample, that is after 336μs. Obviously, now the
computation cannot be performed in real-time. A greater
error threshold (0.5%FS) has been set to take in account the
10-bit of resolution of the ADC converter. Also in this case
the 6 tap filter is less performing than the 8 tap filter; the first
takes 26942 (3.4ms) cycles before giving the first correct
value, while the latter one takes 13058 cycles (1.6ms) with a
saving charge of about 13�C. As before, no optimization has
been used.

�

0 50 100 150 200 2500

100

200

300

Sample

AD
C

 v
al

ue

Filter output

ADC samples

Transient error < 0.5% FS

Figure 9. Filters output with noisy voltage signal.

V. CONCLUSIONS

In this paper an efficient implementation of a hybrid
median-mean filter has been described and tested. It has been
purposely designed to faster wakeup time of an autonomous
wireless node. In this kind of applications, nodes spent most
of their time in low power mode turning off all devices within
the node except a low power oscillator. Obviously, this leads
to a transient that must be discarded in order to obtain a good
quality readout. The developed filter is able to preserve step
response still rejecting broadband noise. Some experimental
results have been described, showing filter performance and
that the proposed implementation greatly decreases
computational time with respect to a traditional approach.

REFERENCES

[1] P. Baronti, et al. Computer Communications 30 (2007) pp. 1655–1695.
[2] J. A. Gutiérrez, E. H. Callaway Jr., R. L. Barrett Jr., ”Low-Rate

Wireless with IEEE 802.15.4”, IEEE Standards Wireless Networks
Series, 2004, pp. 3-12.

[3] A. Jossen, Journal of Power Sources 154 (2006), pp. 530–538.
[4] N.G. Stephen, Journal of Sound and Vibration 293 (2006) pp. 409–425
[5] U. Gather, R. Fried, “Methods and Algorithms for Robust Filtering”,

COMPSTAT 2004: Proceedings in Computational Statistics, pp.
159-170, 2004.

[6] P. Heinonen, Y. Neuvo, “FIR-median hybrid filters” IEEE Transactions
on Acoustics, Speech, and Signal Processing, Vol. 35, pp. 832–838,
1987.

[7] P. Heinonen, Y Neuvo, “FIR-median hybrid filters with predictive FIR
substructures”, IEEE Transactions on Acoustics, Speech, and Signal
Processing, Vol. 36, pp. 892–899, 1988.

[8] P.L. Davies, R. Fried, U. Gather, “Robust signal extraction for on-line
monitoring data”, J. Statistical Planning and Inference, Vol. 122, pp.
65–78, 2004.

[9] C. Croux, P.J. Rousseeuw, “Time-efficient algorithms for two highly
robust estimators of scale”, COMPSTAT 1992, Physica-Verlag,
Heidelberg, pp. 411–428, 1992.

[10] P.J. Rousseuw, C. Croux, “Alternatives to the median absolute
deviation”, J. American Statistical Association, Vol 88, pp. 1273–1283,
1993.

[11] O. Vainio, Y. Neuvo, S.E. Butner, “A signal processor for median-
based algorithms”, IEEE Transactions on Acoustics, Speech, and
Signal Processing, Vol. 37, pp. 1406-1414, 1989.

[12] C. Chandra, M.S. Moore, S.K.Mitra, “An efficient method for the
removal of impulse noise from speechand audio signals”, Proceedings
of the 1998 IEEE International Symposium on Circuits and Systems,
ISCAS 1998, Vol. 4, pp. 206-208, 31 May-3 Jun 1998.

[13] P.J.S.G. Ferreira, “Sorting continuous-time signals: analog median and
median-type filters”, IEEE Transactions on Signal Processing, Vol. 49,
pp. 2734-2744, 2001.

[14] I. Kauppinen, “Methods for detecting impulsive noise in speech and
audio signals”, 14th International Conference on Digital Signal
Processing, DSP 2002, Vol. 2, pp. 967-970, 1-3 July 2002.

[15] J. Astola, P. Kuosmanen, “Fundamentals of Nonlinear Digital
Filtering”, CRC Press, 1997, ISBN 0849325706.

[16] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling
“Numerical Recipes in C: The Art of Scientific Computing” ,
Cambridge University Press, 1992, ISBN 0521431085

1215

